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Abstract
L-loop congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital heart defect that may remain 
undiagnosed for decades and lead to significant morbidities, making it of interest for early detection. In this study, we address 
this gap by developing and internally testing an artificial intelligence–enabled electrocardiogram (AI-ECG) model to diagnose 
ccTGA from standard 12-lead ECGs. The dataset included the first ECG from 61,482 patients (0.7% with ccTGA), which was 
partitioned into training (70%) and testing (30%) cohorts. The convolutional neural network model achieved an area under the 
receiver-operating characteristic curve of 0.95 [95% CI 0.94–0.96] and an area under the precision-recall curve of 0.16 [95% 
CI 0.12–0.21]. The model performed well across different age groups, with slightly lower performance in patients < 1 month 
old. Key features identified by the model included widened QRS complexes, negative QRS complexes in leads V1-V2, and 
the lack of Q waves in lateral precordial leads. This study highlights the potential of AI-ECG to detect subtle patterns in rare 
congenital heart defects, providing a scalable method for early diagnosis and improving access to care. Future studies may 
include external validation in diverse clinical settings and multi-modal models to enhance performance and clinical utility.

Keywords Congenital heart disease · Artificial intelligence · Electrocardiograms, · Congenitally corrected transposition of 
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Introduction

L-loop congenitally corrected transposition of the great 
arteries (ccTGA) is a rare congenital heart defect character-
ized by atrioventricular and ventriculoarterial discordance 
that is conventionally detected by echocardiogram. Unlike 
the more common form of TGA (D-loop TGA) where 
immediate intervention is required, ccTGA can remain 
undiagnosed for many years in both resource-limited and 
resource-rich healthcare settings [1–5]. The progressive sys-
temic right ventricular dysfunction, tricuspid regurgitation, 

and arrhythmias that occur in ccTGA make timely diagnosis 
and management important [6]. Recent evidence demon-
strated that early presentation of ccTGA for anatomic repair 
(i.e., double switch operation) is favorable for long-term 
outcomes. Therefore, timely diagnosis of ccTGA is of great 
interest [7].

Artificial intelligence-enabled ECG (AI-ECG) has shown 
promise as an inexpensive, ubiquitous, and noninvasive 
screening tool for detecting a range of pathologies in the 
general adult population, including structural heart diseases 
(e.g., hypertrophic cardiomyopathy and aortic stenosis) [8]. 
In the pediatric cardiology population, AI-ECG has also reli-
ably detected numerous congenital heart lesions [9]. How-
ever, to our knowledge, an AI-ECG model has yet to be 
developed and validated to detect ccTGA.

In this study, we aimed to address this gap by developing 
and internally validating an AI-ECG model to detect ccTGA 
from standard 12-lead ECGs. To do so, we utilized a large, 
well-annotated, single-institution dataset and established 
deep learning techniques [10–12].
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Methods:

Study Population

Given our objective to detect ccTGA early in life, our inclu-
sion criteria consisted of infants (≤ 1 years old) with ≥ 1 
digitized ECG. We only included the first ECG per patient. 
ECGs failing to pass quality control were excluded. More 
specifically, ECGs were excluded if any lead contained fewer 
than 2500 samples or if any lead information was missing 
(1.0% exclusion rate). All ECGs were obtained from the car-
diology database at Boston Children’s Hospital, spanning 
from 1990 (earliest available digitized ECG) to 2023 [10, 
11]. Patients were randomly assigned in a 70:30 ratio to 
training and internal testing sets, respectively.

Primary Outcomes

The primary outcome was confirmed diagnosis of L-loop 
ccTGA. This diagnosis is typically made by echocardiogra-
phy; expert pediatric cardiology providers label patients with 
this diagnosis using a custom Fyler coding system [13]. This 
institutional coding system represents a well-established 
and standardized method for diagnostic classification. It is 
applied by experienced clinicians at our institution following 
comprehensive review of diagnostic data (including echocar-
diography). This diagnostic coding system has been success-
ful for several AI-ECG applications, inclusive of detection of 
ventricular dysfunction and other forms of congenital heart 
disease [14, 15]. Rare forms of ccTGA (e.g., {I,D,D} situs 
inversus with atrioventricular and ventriculoarterial discord-
ance) were not included in the case definition. Lesions com-
monly associated with ccTGA such as dextrocardia, Ebstein-
like anomaly of the tricuspid valve, and ventricular septal 
defect were also identified using Fyler codes.

Data Retrieval and Processing

Raw ECG signals were extracted from the MUSE ECG man-
agement system (GE Healthcare, Chicago, IL), containing 
one-dimensional data vectors (sampling rate of 250 Hz for 
10 s per lead). Leads III, aVF, aVL, and aVR were derived 
using Einthoven’s law and the Goldberger equation [16, 17]. 
Additional retrieved data included age, sex, and the pres-
ence of dextrocardia, ventricular septal defect, or Ebstein-
like malformation of the tricuspid valve.

High-pass filtering (cutoff frequency 0.8 Hz, rejection 
band 0.2 Hz, passband ripple 0.5 dB, rejection band attenu-
ation 40 dB) was applied to remove artifacts such as baseline 
wander and electrical interference. ECGs were trimmed to 
2048 samples (~8 s) to standardize input dimensions for a 
convolutional neural network.

Model Development, Training, and Evaluation

Two convolutional neural networks were trained to identify 
ccTGA. The first model received full 12-lead ECG inputs, 
aligning with standard clinical practice in the United States. 
In our literature review, we found that select international 
centers may use a subset of 9 leads (limb leads + V1, V3, 
V5) [9]. Therefore, to make our model compatible with 
select international practices, we also created a model that 
takes 9-lead inputs.

The training set was further divided, with 95% used for 
model training and 5% reserved for validation and hyperpa-
rameter tuning. The model architecture followed a residual 
network design adapted for one-dimensional signals [11]. 
Hyperparameter tuning was conducted using a grid search 
across kernel sizes [3, 9, 17], batch sizes [8, 32, 64], and ini-
tial learning rates [0.01, 0.001, 0.0001, 0.00001]. The final 
model was selected based on the lowest validation loss. The 
Adam optimizer was used to minimize cross-entropy loss 
over a maximum of 150 epochs, with early stopping based 
on validation performance. To reduce overfitting, a dropout 
rate of 0.2 was used.

Model performance was assessed using area under the 
receiver-operating characteristic (AUROC) and precision-
recall (AUPRC) curves. Additional metrics such as positive 
predictive value (PPV), negative predictive value (NPV), 
sensitivity, and specificity were calculated using two clini-
cally relevant cutoffs: 1) a high sensitivity cutoff (achieving 
99% sensitivity); and 2) a high specificity cutoff (achieving 
99% specificity). In addition, the model lift score was calcu-
lated, which is defined as the ratio of the PPV to the outcome 
prevalence. In other words, it measures how much better 
a model’s predictions are compared to randomly guessing.

Bootstrap resampling (1000 iterations) was performed to 
obtain median values and 95% confidence intervals. Model 
performance was assessed in select age, sex, and lesion-
specific subgroups. For subgroup analysis, the cohort was 
stratified into the following age groups: < 1 week, 1 week to 
1 month, 1–3 months, 3–6 months, and 3 months to 1 year. 
Model performance was compared between the 12-lead ECG 
and 9-lead ECG using the DeLong test.

Model implementation used Keras with a TensorFlow 
backend in Python 3.9, with deep learning executed on 
institutional GPUs. Additional preprocessing and statistical 
analyses were conducted using Python 3.9 and R 4.0.

Model Explainability

To interpret model behavior, median waveform analysis and 
saliency mapping were employed as previously described 
[11]. Median waveforms provide visual representations of 
ECGs that are high- and low-risk of ccTGA. The 25 highest 
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predicted ECGs for ccTGA were used to generate high-risk 
median waveforms, and the 25 lowest predicted ECGs for 
ccTGA were used to generate low-risk median waveforms.

Saliency mapping highlights regions of the ECG that con-
tribute to model predictions. Saliency maps were derived 
using Shapley Additive Explanations (SHAP) on the 25 
ECGs with the highest predicted probability of ccTGA [18].

Results

Baseline Characteristics

The main study cohort included 61,482 patients, of whom 
454 (0.7%) had ccTGA. Of those with ccTGA, 104 (23%) 
had dextrocardia, 49 (11%) had Ebstein-like malformation 
of the tricuspid valve, and 251 (55%) had a ventricular septal 
defect.

Baseline characteristics of the training (n = 43,074) and 
testing (n = 18,408) cohorts are shown in Table 1. Across 
both cohorts, 53% were male, and the median age at ECG 
was 0.2 [IQR 0.1–0.4] years. The prevalence of associated 
lesions such as dextrocardia, Ebstein-like anomaly of the 
tricuspid valve, and ventricular septal defect were 0.9–1%, 
0.4–0.5%, and 16% across internal cohorts (Table 1).

Model Performance

As shown in Fig. 1, similarly high model performance is 
observed when using 12-lead (AUROC 0.95) and 9-lead 
inputs (AUROC 0.95) to detect ccTGA (p = 0.41). In the 
context of class imbalance and a ccTGA prevalence of 0.7%, 
an AUPRC of 0.16–0.17 was achieved.

Performance across subgroups, including age, sex, and 
associated lesions is presented in Fig.  2. AUROC and 
AUPRC remained consistent across ages 1 month to 1 year. 
Interestingly, performance slightly dropped in the 1 week 
to 1 month subgroup, and to a greater extent in the neona-
tal (< 1 week) subgroup. Model performance was slightly 
higher in males than females. In subgroups with dextrocar-
dia, Ebstein-like malformation, and ventricular septal defect, 
the AUROC were lower and AUPRC higher.

Performance metrics were calculated when using high 
sensitivity and high specificity cutoffs (Table 2). At the high 
sensitivity cutoff (achieving 99% sensitivity), a specificity of 
53%, NPV of 100%, PPV of 1.7%, and percentage predicted 
negative of 52.3% was obtained. At the high specificity cut-
off (achieving 99% specificity), sensitivity was 36%, NPV 
was 99.5%, PPV was 20.3%, and percent predicted positive 
was 1.2%. At the high specificity cutoff, a lift score of 29 
was achieved.

Table 1  Baseline characteristics of the training and testing datasets

Training
N = 43,074

Testing
N = 18,408

Sex (male) 23,010 (53%) 9707 (53%)
Age at ECG (years) 0.2 (0.1, 0.4) 0.2 (0.1, 0.4)
Associated Lesions
 Dextrocardia 391 (0.9%) 182 (1.0%)
 Ebstein 210 (0.5%) 81 (0.4%)
 Ventricular septal defect 7105 (16%) 3033 (16%)

Outcome
 ccTGA 324 (0.8%) 130 (0.7%)

Fig. 1  AI-ECG Model Performance to Detect ccTGA. Receiver 
operative characteristics (left panel) and precision-recall (right panel) 
curves for the AI-ECG model for predicting the diagnosis of ccTGA 
using 12-lead ECGs (blue) versus 9-lead ECGs (orange). Dotted line 
represents chance. 95% confidence intervals are shown using boot-

strapping. P-value indicates comparison of 12-lead and 9-lead per-
formance using the DeLong test. Abbreviations: AUROC, area under 
the receiver operative curve; AUPRC, area under the precision-recall 
curve; PPV, positive predictive value
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Model Explainability

To explain model behavior, median waveform analysis and 
saliency mapping was performed. Median waveforms for 
highest and lowest AI-ECG predictions are shown in Fig. 3. 
Waveforms that are high-risk for ccTGA include negative 
QRS complexes in V1-V2. In addition, wider QRS com-
plexes are noted, with the absence of Q waves in lateral 
precordial leads. Salient features for predicting ccTGA 
include the QRS complex and T waves across limb (II, III, 
aVL, aVF) and precordial (V1-V2) leads.

Discussion

In this study, we developed and internally validated (to 
our knowledge) the first AI-ECG model to identify ccTGA 
from standard 12-lead ECGs. Our findings demonstrate the 
promise of AI-ECG for early detection of structural heart 
disease, and more broadly for children with congenital heart 
disease [9, 12, 19, 20]. Furthermore, our exploration of a 
model using a 9-lead subset (limb leads plus V1, V3, V5), 
informed by reported international ECG practices, demon-
strated comparable diagnostic performance to the standard 
12-lead approach. While requiring external validation, this 
suggests the potential feasibility of applying such AI-ECG 
tools in settings utilizing this reduced lead configuration, 
potentially broadening its applicability.

Clinical Relevance of Early ccTGA Detection

The optimal management of ccTGA remains unclear, espe-
cially among those with intact ventricular septum. One of 
the dilemmas for this lesion is the unpredictable nature 
of the systemic right ventricle. Recently, Cui et al. dem-
onstrated that the natural history of ccTGA is challenging, 
with nearly half of ccTGA patients with intact ventricular 
septum developing varying degrees of right ventricular 
failure, tricuspid valve dysfunction, and premature death 
within 20 years of presentation [6, 21]. This same group 
demonstrated that early presentation of ccTGA for anatomic 
repair (i.e., double switch operation) is favorable (patients 
with presentation at age ≤ 5 years had a hazard ratio of 0.16 
for a composite outcome of mortality, heart transplantation, 
or significant valvar or ventricular dysfunction after double 
switch operation) [6, 7].

AI‑ECG Use for Detecting Structural Heart Disease

AI-ECG has been used to detect structural heart diseases 
in adults and to predict various forms of congenital heart 
disease in the pediatric population [9]. However, ccTGA 
is a rare condition, making the development of a tailored 

Fig. 2  Subgroup Analysis of AI-ECG Model Performance. Forest 
plot showing AI-ECG area under the receiver-operating (AUROC; 
red) and precision-recall (AUPRC; black) curve performance when 
stratifying by age group, sex, and associated lesions (dextrocardia, 
Ebstein-like malformation of the tricuspid valve, and ventricular sep-
tal defect)

Table 2  Performance metrics for AI-ECG model for detecting ccTGA 

NPV negative predictive value; PPV positive predictive value

High sensitivity cutoff High specificity cutoff

Sensitivity 0.99 [0.97–0.99] 0.36 [0.27–0.45]
Specificity 0.53 [0.40–0.75] 0.99 [0.99–0.99]
NPV (%) 100.0 [100.0–100.0] 99.5 [99.5–99.6]
PPV (%) 1.7 [1.2–2.7] 20.3 [16.1–24.4]
Predicted Nega-

tive (%)
52.3 [39.9–74.0] 98.8 [98.7–98.8]
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AI-ECG model difficult. In this study, we leveraged our 
institution’s volume and data infrastructure to create a 
ccTGA-specific model. Our model explainability aligns with 
known ECG abnormalities in ccTGA (e.g., absence of Q 
waves in lateral precordial leads and abnormal depolariza-
tion of the interventricular septum) [22, 23]. These specific 
ECG characteristics are thought to reflect the underlying 
pathophysiology—the abnormal ventricular depolarization 
sequence resulting from ventricular inversion (atrioventricu-
lar discordance) and the altered spatial orientation of the 
heart.

Clinical Significance of this AI‑ECG Tool

To assess the clinical relevance of our tool, we utilized two 
cutoffs: a high sensitivity cutoff, and a high specificity cut-
off. While the high sensitivity cutoff achieves a high sensi-
tivity (99%) and NPV (100%), only half of patients are pre-
dicted negative with a PPV of 1.7%. This low PPV indicates 
that the vast majority of positive results at this threshold 
would be false positives, potentially triggering a large vol-
ume of unnecessary follow-up echocardiograms. In a poten-
tial screening scenario, this would place a significant burden 
on healthcare resources, particularly impacting systems with 
limited echocardiographic capacity. In contrast, the high 
specificity cutoff achieves a specificity of 99% and PPV of 
20%. In other words, in the select few that are deemed posi-
tive by AI-ECG (1.2%), 1 in 5 will then be confirmed to have 

ccTGA. We feel this is a more clinically useful application 
of this technology, albeit it will only capture ~ 1/3 of cases 
(given the sensitivity of 36%).

Limitations and Future Directions

While these results are promising, we acknowledge several 
limitations. First, a primary limitation is that our model 
was developed and validated using data from a single-
institution. Therefore, its generalizability to other clinical 
settings remains unproven, and external validation repre-
sents a crucial next step. Model performance may vary sig-
nificantly when applied to external datasets due to poten-
tial differences in patient demographics, the prevalence of 
ccTGA and associated lesions, ECG acquisition systems 
(e.g., different manufacturers, software versions, filtering 
protocols), and data annotation practices. Future external 
validation studies are essential to assess the robustness and 
real-world applicability of this AI-ECG model. Second, our 
model requires access to digital waveforms. Recent work has 
demonstrated the potential of AI-ECG tools utilizing ECG 
photo inputs (rather than digital waveforms) [24]; future 
work may include creating a similar model to bypass the 
need for access to digital waveforms. Third, cost–benefit 
analyses and clinical implementation studies are required. 
Fourth, saliency mapping interpretations of model behavior 
are limited to the patients we studied and may change for 
unseen cases. Fifth, rare forms of ccTGA (e.g., {I,D,D} with 

Fig. 3  AI-ECG Model Behavior to Predict ccTGA. Visualization of 
median waveforms generated in each lead using ECGs from the high-
est (red) and lowest (green) AI-ECG predictions of ccTGA. Saliency 

mapping demarcates regions of the ECG waveform having greatest 
(dark blue) and least (light blue) influence to predict ccTGA 
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atrioventricular and ventriculoarterial discordance) were 
not included as positive cases. Finally, we acknowledge that 
model performance may improve if a multi-modal model 
was generated, inclusive of ECG, text, and/or imaging data.

Conclusion

In conclusion, this study demonstrates that AI-ECG can 
accurately detect ccTGA, offering a scalable way to improve 
early diagnosis and access to care. By identifying cases 
sooner, this tool may help ensure timely treatment and 
improve patient outcomes. Future research should focus on 
validating the model in different settings, integrating it into 
clinical practice, and exploring its potential for predicting 
long-term complications like RV failure and arrhythmias.
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